not require inverse of large GRM and accounts for multiple sources of information while avoiding double-counting. Correlations between accuracy from the new algorithm and true accuracy from PEV were higher than 0.85 for growth traits. Single-step GBLUP can be considered a mature methodology for commercial genomic selection in beef cattle.

Key Words: beef cattle, genomic selection doi: 10.2527/jam2016-0303

0304 Single-step GBLUP using APY inverse for protein yield in U.S. Holstein with a large number of genotyped animals. Y. Masuda^{*1}, I. Misztal¹, and P. M. VanRaden², ¹University of Georgia, Athens, ²Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD.

The objective of this study was to provide initial results in an application of single-step genomic BLUP with a genomic relationship matrix (G^{-1}_{APY}) calculated using the Algorithm of Proven and Young (APY) to 305-d protein yield for U.S. Holsteins. Two G^{-1}_{APY} were tested; one was from 139,057 genotyped bulls with 12,895 core animals (APY140K) and the other one was from 764,029 genotyped animals with 12,913 core animals (APY760K). The predictor data set consisted of phenotypes recorded after 1989 and pedigrees limited to 3 generations back from recorded or genotyped animals. Genomic predictions (GPTA2011) were calculated for predicted bulls that had no recorded-daughters in 2011 but had at least 50 such daughters in 2015. We used the official daughter yield deviations published in 2015 (DYD2015) for the predicted bulls (N = 3797). We also used the official GPTA published in 2011 with a multistep method as a comparison, although official methods have improved since then. Coefficient of determination (R^2) and slope (b_1) were calculated from a linear regression of DYD2015 on GPTA2011. Using APY140K, the R^2 was 0.50 compared with 0.51 from the official GPTA. The b_1 was much better (0.98) compared with 0.81 from the official GPTA. With APY760K, the R^2 was 0.46 and b_1 was 1.08. Incorporating effect of a SNP related to DGAT1 increased R^2 to 0.51 for APY140K and 0.48 for APY760K. The decrease in R^2 with APY760K compared with APY140K could be due to inclusion of lower quality genotypes, or biases caused with the use of all genotypes with incomplete phenotypes. All the computations finished within 11 h including 4.2 h to set up APY-inverse with APY760K. Based on the linearity of the computation cost, using 1 million genotyped animals with the same model would require 14 h of computations. Single-step GBLUP can provide genomic predictions for all genotyped bulls and cows while accounting for pre-selection. Further research will determine the impact of various factors affecting the reliability such as validation methodology, weighting SNP markers, and quality of genotyped data.

Key Words: genomic evaluation, Holstein, ssGBLUP doi: 10.2527/jam2016-0304

Simp

0305 Heteroskedastic extensions for genome-wide association studies. Z. Ou^{*1}, R. J. Tempelman², J. P. Steibel^{3,4}, C. W. Ernst³, R. O. Bates³, C. Chen³, and N. M. Bello¹, ¹Department of Statistics, Kansas State University, Manhattan, ²Michigan State University, East Lansing, ³Department of Animal Science, Michigan State University, East Lansing, ⁴Department of Fisheries and Wildlife, Michigan State University, East Lansing.

Bayesian multiple regression models based on genomic marker information are commonly used for genomic prediction and selection and are being increasingly utilized in genome-wide association (GWA) analyses to search for genomic regions associated with economical important traits in agriculture. These models jointly fit all markers, thereby circumventing the limitations of "one-marker-at-a-time" of traditional GWA inference. We have recently validated and tested extensions of genomic prediction models to account for residual heteroskedasticity, which is prevalent in livestock field data. Our objective was to evaluate the impact of not accounting for potential residual heteroskedasticity in GWA inference. Using simulated data scenarios that reflected a gradient of increasing residual heteroskedasticity, we fitted homoscedastic and heteroskedastic error versions of hierarchical Bayesian genomic prediction models assuming either normal (RR-BLUP) or heavy-tailed (BayesA) prior specifications on the effects of genomic markers. For each marker, we then constructed a posterior z-score using prediction error variance of the estimated marker effect to detect associations between genomic regions and phenotypes of interest. Under conditions of extreme heterogeneity of residual variances, heteroskedastic models showed an increase in power of up to 10% points for GWA discovery with little impact on false positive rate (i.e., change of 0 to 3% points), compared with the homoscedastic model counterparts. Further, when heteroskedasticity was high, the absolute magnitude of the estimated signal for the most prominent QTL expressed as a posterior z-score was enhanced by 20% and 34% for heteroskedastic RR-BLUP and BayesA, respectively. The inferential advantages of heteroskedastic models over homoscedastic ones were particularly apparent under a BayesA specification. A data application involving three quantitative carcass and meat quality traits from a swine resource population representing high, mild and low levels of heteroskedasticity yielded proportionally enhanced differential detection signal for the heteroskedastic models relative to the homoscedastic ones, consistent with results from the simulation study. In conclusion, accounting for residual heteroskedasticity can be expected to enhance power in the identification of important genomic regions for traits of interest.

Key Words: genome-wide association, residual heteroskedasticity, genomic prediction model doi: 10.2527/jam2016-0305

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.

www.manaraa.com